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A new method for the direct calculation of resonance parameters is presented. 
It is based upon searching for poles of the scattering matrix at complex 
energies. This search is expedited by the use of analytic derivatives of the 
scattering matrix with respect to the total energy. This procedure is applied 
initially to a single channel problem, but is generalizable to more complicated 
systems. Using the most accurate available potential energy data, we calculate 
resonance parameters for all of the physically important quasibound states 
of the ground electronic state of  the hydrogen molecule. Corrections to the 
Born-Oppenheimer  potential are included and assessed. The new method has 
no difficulty locating resonances with widths greater than about 1 x 10  -7  cm -l. 
It is easier to find narrow resonances by monitoring the dependence of the 
imaginary part of the reactance matrix on the real part of  a complex energy 
than to monitor the dependence of the eigenphase sum on energy at real 
energies. 
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1. Introduction 

Resonances take part in a wide variety of  physical phenomena [ 1], thus a detailed 
understanding of resonant processes is an important theoretical goal. The par- 
ticular physical process motivating the present study is the three body recombina- 
tion of hydrogen atoms to form hydrogen molecules. A detailed theoretical 
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description of three body recombination kinetics requires as input the identity 
of  the important quasibound states involved in the recombination process [2]. 
Part of the information necessary to discriminate between the important and 
unimportant resonances are the energies and lifetimes, which will be calculated 
here using a new computational method. Although in the present paper the new 
method is only applied to a single channel problem, the techniques developed 
here are more general. 

Quasibound states, or resonances, are bound states at complex energies while 
true bound states occur at negative real energies [3]. At real energies near the 
resonance energy, the scattering states share many features with true bound states, 
the main exception being that they have nonzero decay life times. 

A resonance is completely characterized by the location of the bound state energy 
in the complex energy plane as well as the residue of the scattering matrix at 
that energy. All of these quantities can be determined indirectly from calculations 
at real energies [4-7], however, calculations at only real energies do not produce 
unique results because of the fitting procedures involved. Part of the difficulty 
stems from the interference between resonant scattering and background scatter- 
ing as well as the possibility of interference between overlapping resonances. 
Additional complications arise because different interpretations of the physical 
processes by which resonances are manifested can lead to different methods of 
calculating some of the resonance parameters [8]. One great advantage of calcula- 
tions at complex energy is that none of these ambiguities arise. In spite of this 
advantage, there have been relatively few studies where all resonance parameters 
were obtained from scattering calculations at complex energies [9, 10]. 

For the hydrogen molecule, there have been several determinations of the reson- 
ance energies [11-14] (the real part of the complex bound state energy) and some 
of the resonance widths [12-13] (the negative of twice the imaginary part of the 
complex bound state energy), but none of the partial widths (the absolute value 
of the residue). These studies were restricted to calculations at real energies and 
the calculations of the resonance widths used potential energy data which has 
since been improved [15-16]. In this paper we directly calculate all of  the 
resonance parameters for the important //2 quasibound states using the most 
accurate available potential data, included corrections to the Born-Oppenheimer 
potential. Our results are compared to previous determinations of the resonance 
parameters as well as to some simpler methods and to experiment when possible. 
We will see that, the current method is a very powerful way to determine the 
resonance parameters for resonances which vary from being quite broad to 
extremely narrow. 

2. Theory 

The Schr6dinger equation describing the time independent collision of two 
particles can be written as 

d2f,,o(r)/ dr2= Z {6,,,[l,,(l,,+ 1)/r  2 -  k2,3 + 21~h-2V,,,(r)}f,,,o(r), (1) 
n'  
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where each n defines a channel, I. is the orbital angular momentum for channel 
n, k. is the wave vector for channel n given by 

k~. = 2 ~ , ( E  - E.)/~2, (2) 
where /x is the reduced mass for the collision process, E is the total energy, e. 
is the eigenenergy of channel n, and V~., is a potential matrix element. Eq. (1) 
is solved for the unknown radial functions f~ ,  which are subject to the boundary 
conditions 

f . . , ( r )  ~ 0 as r ~ 0, (3) 

f ~ , ( r ) ~ 6 . . , h ~ ) ( r ) + h ~ l ) ( r ) S n . ,  as r~oo ,  (4) 

where S~., is a scattering matrix element and the matching functions are given by 

h~l~(r) = k~/2[jt,,(k~r) + iyt .(k.r)]  (5) 

and 

h ~ (  r) = k~/2[j,. ( k~r) - iyl. ( k~r) ], (6) 

jt and y~ being the Riccati-Bessel functions which go asymptotically as sin and 
-cos .  From the scattering matrix, the physical observables for the scattering 
process can be calculated. 

We will define a resonance to be manifested by a pole in the scattering matrix 
in the complex energy plane with Re E > 0 and Im E < 0 [3]. At these energies, 
the scattering wavefunction is essentially square integrable since the wavefunction 
will only contain exponentially decreasing components [h(1)(k~r)oc 
exp ( - I m  [k~r]) exp {/(Re [k.r]  - 1~-/2)} as r ~ oo]. It should be noted that if the 
matching functions h (1~ and h (2) are interchanged in the boundary conditions 
specified by Eq. (4), the inverse of  the scattering matrix appears in that equation 
instead of the scattering matrix. This is useful because where the scattering matrix 
has a pole, the inverse will have a zero, which is more convenient to handle 
numerically. 

In general, in the vicinity of  a resonance, the energy dependence of the scattering 
matrix will take the form [17] 

z~ - E '  (7) 

where S~., is a background, nonresonant contribution which varies slowly with 
energy, o~ labels a particular resonance, y~. is a partial width amplitude, and z. 
is the position of the pole in the complex energy plane. A useful diagnostic at 
real energies for the detection of the presence of a resonance is to consider the 
energy dependence of the eigenphase sum A defined by 

det S = exp (2iA). (8) 

Normally for molecular systems, A decreases as the energy increases, but in the 
vicinity of  a resonance, A suddenly increases by ~r as the energy is increased [18]. 
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It is useful to define the observable quantities ~ ,  F~ and F~ by 

z~ = ~,~ - iF,~/2, (9) 

and 

0 
--Ir .l 2 . ( 1 0 )  

~ is called the resonance energy, F~ the total resonance width and F ~ a partial 
width. The resonance energy is the physically obtainable energy where the 
scattering due to the resonance is most important.  The total resonance width 
controls both the energy range over which the resonance scattering is observed 
and also the decay rate of  the resonant state. In particular, the resonant state 
decays with an unimolecular rate equal to F~/h.  In a multichannel problem, the 
partial widths control the branching ratios to the various final states when the 
resonant state decays. 

It can be shown that in the vicinity of  an isolated, narrow resonance ( INR) [17], 
that the partial widths sum up to the total resonance width: 

r ~ = E r  ~ (11) 
n 

However, previous experience [7] indicates that when a resonance is not isolated 
and narrow, usually Eq. (11) becomes an inequality with the partial width being 
less than the total width. Some previous studies [4-6] which determined partial 
widths constrained them to satisfy Eq. (11). In the present study, we directly 
determine the resonance energy and total width from Eq. (9) after determining 
the energy z~ which gives rise to a pole in the scattering matrix. In addition, we 
determine the partial widths by numerically evaluating the contour integral 

~ S,,~,(E) dE  = 2~r%~%~,. (12) 

Thus using our procedure, it is not necessary to make any assumption about the 
background contribution Sb,,, or whether or not Eq. (11) is satisfied. 

3. Numerical methods 

This section will be broken up into five subsections. First we describe how we 
proceed with the search for the pole, which motivates our algorithm for solving 
Eq. (1). Then this algorithm is discussed, followed by methods for determining 
initial guesses for the pole energy. Next we consider some subtleties concerning 
large r behavior  of  the potential and finally we discuss how we extrapolate to 
the limit of  zero stepsize. 

Our initial application is to the collision of  two hydrogen atoms. In this case, 
there is only one term in the sum of Eq. (1) and we take our zero of energy so 
that el is zero. Individual resonances will be labeled by a = (v, J ) ,  where v 
indicates the number of nodes in the wave function inside the potential maximum 
and J indicates the angular momentum of the system (i.e. 11 = J).  For our initial 
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tests, we use the potential of [ l l ] - - w e  denote this the WB potent ial--and we 
take the reduced mass # to be 918.575728 a.u., since this appears to be close to 
the value used in [12]. All of  our calculations are carried out using Hartree atomic 
units and the final energies are converted to cm -1 by division by the factor 
4.556335 • 10 -6. 

3.1. Searching for the pole 

It is numerically inconvenient to search for the pole of the scattering matrix. 
Instead, we will search for the zero of the inverse of the scattering matrix. 

One of the most powerful methods for determining a zero of a multidimensional 
function is the Newton-Raphson procedure [19]. In this procedure, applied to 
the present problem, given a guess to the energy of the zero at iteration j, zj, the 
improved estimate for the zero is 

Zj + I = Zj-~- (~ , 

where 6 is determined from the matrix relation 

d = _ j -  l f ,  

where 

dl = Re 6, 

d2=Im 3, 

fl  = Re det s - l (z j ) ,  

f2= Im det S-~(zj), 

Jn = -/22 = Re d det S-l/dz]z=zj, 

J21 = -J12 = Im d det S-1/dz]z=zj, 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

where det S - '  is the determinant of  the inverse of  the scattering matrix. For the 
present application, det S -~ is simply S?~. In the vicinity of the root, the Newton- 
Raphson procedure converges quadratically. We have found that this procedure 
converges quite well provided zj is sufficiently close to the root energy. If  zj is 
not sufficiently close, [det S--I(zj+I)I will be further from zero than [det S-l(zj)[ 
was and we try scaling 6 in Eq. (13) by multiples of 1/2 until an energy is 
produced which has Idet S -a] closer to zero than ]det s-l(z~)] was. Sometimes, 
especially for narrow resonances, it is advantageous to enforce a limit on the 
maximum change in z to keep the estimates from wandering away from the zero. 
If  z~ is too far from the root energy, then the search fails to find the root. 

As mentioned in Sect. 2 we calculate the partial widths by evaluating Eq. (12). 
The particular contour we use is a square one with a side of length F~/5 centered 
on the pole. The integral along each side is evaluated using Gauss-Legendre 
quadrature with typically 6 points per side required to converge the results to 
about 0.1%. 
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If, as in the present application, only one channel is involved and det S -1 is the 
same as S -~, the Newton-Raphson scheme is the most natural procedure. 
However, in multichannel applications, it might be more advantageous to search 
for an energy which zeros each [S -1] nn' individually - -  this gives rise to a nonlinear 
least squares procedure. Previous workers have considered both choices [9, 10]. 

An important reason for the fast convergence of  the Newton-Raphson procedure 
is the presence of the derivative. The derivative of the scattering matrix with 
respect to energy is not usually a by-product of a scattering calculation, and 
requires a special algorithm to calculate it. 

3.2. Calculating the derivative o f  the scattering matrix 

The procedure we will use to calculate the scattering matrix and its derivative is 
a modification of the R matrix propagation algorithm [20]. In the equations 
below, bold face quantities will denote matrices. In the discussion that follows, 
the standard R matrix propagation algorithm is used to just calculate R4, while 
we modify it to also calculate OR4/OE. 

Derivatives of  the scattering matrix can be obtained from integrals of the wave 
function [21], however, this m a y b e  undesirable for two reasons. First of all, 
most numerical algorithms which are stable with respect to including closed 
channels (such as the R matrix propagation algorithm) do not directly yield the 
wave function, and it is not necessarily possible to extract an accurate wave 
function from them. Secondly some sort of  numerical quadrature would usually 
be involved to evaluate the integral, and this can produce numerical error. The 
method proposed below is free of both of these problems. 

We rewrite Eq. (1) in the form 

d2 f /  dr 2 = D ( r ) f ( r ) ,  (21) 

where 

Dnn, = {6n,'[ln(ln + 1) / r  2 - k 2] +2tzh-2Vn~,(r)}. (22) 

We integrate Eq. (21) from r = to, where f is negligible, to r =  rasy, where the 
potential is negligible. The range ro to rasy is divided up into M sectors with 
centers rj and widths hj such that ro = r l -  h l /2  and rasy = rM + hM/2.  In each 
sector we assume D is independent of r, and we take its value to be D(rj) for 
sector j and call it D (j). Thus we can uncouple Eq. (21) by applying the 
transformation T (j) which diagonalizes D (j). The uncoupled equations are then 
solved analytically using the Magnus propagator. To make the solution numeri- 
cally stable, instead of directly determining the wavefunction f, in this algorithm 
one determines the quantity R4 defined by 

R4(r') = - f ( r ' ) [d f /dr{r=r ,]  -~. (23) 

Making the definition that R(4 j) is R4 evaluated at 1)+ h / 2 ,  then the R matrix 
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propagat ion equations can be written 

R(4J) = r(4J) - r~J)M(j  - 1, j )  r(j ), 

M ( j -  1, j )  = [R(4J-~) + rlJ)] -1, 

rl j) = 3 - ( j -  1, j)P~J)[P~J)]-I[ 3-( j  - 1, j ) ] - i  

r(2 j) = ~ - ( j  - 1, j ) [ P ~ J ) ] - I ,  

r(j) = [p( j ) ] - l [  j - ( j  _ 1, j ) ]  -1, 

r(J) -- r p (J )q-1  p(j) 
- -  i _ J 3  J a l  

~-(j - 1 , j )  -- T(J-1)rT(J), 

[e~J)].., = 6..,  cos ( - hjh(.J)), 

[P~J)]..,= - 6..,A(. j) sin ( - hjA (.J)), 

and 

T(J) D(J) Y(J) -- 6 ,~ (j)2 
_ _ n , n ~ n , n , , ~ n , , n o  - -  n n o . .  n �9 

n ' , r l "  
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(24) 

(25) 

(26) 

(27) 

(28)  

(29) 

(30) 

(31) 

(32) 

(33) 

Equations (31) and (32) remain valid as A~ ) becomes  complex. In the first sector, 
we have 

R (1)--- r(41). (34) 

We now wish to calculate aR(aJ)/OE. To do this, differentiate Eq. (24): 

OR~J)/oE = arn/aE - o r ~ J ) / o E M ( j -  1, j)r(2 j) 

+ r~J)M(j  - 1,j)[aR(4J-1)/aE + o r ~ J ) / a E ] M ( j  - 1, j)r(2 j) (35) 

- r~J)M(j  - 1, j )  Or(2J)/OE. 

The derivatives on the right hand side of  Eq. (35) are easily evaluated from Eqs. 
(24)-(29) to yield 

ar~J)/aE = 3-( j  - 1, j )  or(,J)/aE[ ~-( j  - 1, j ) ]  -1, (36) 

ar ( j ) /aE  = J - ( j -  1, j )  b[P~J)]-I/oE, (37) 

ar~J)/OE = O[ P~ j)] -1/OE[ 8- ( j  - 1, j)]-1,  (38) 

ar(4j)/aE = a[p~j)] -1/OEp~j)  + [ p ~ j ) ]  --1 Op~j)/OE. (39) 

The final derivatives required are 

h A(J)~/UJ)~2 (40) a [  P ~ J ) ] . . , /  a E = - a,,,,,/zhj s in ( - ~ . : .  . . . . .  , 

and 

a[p~)]-l/a E = _ [ p ~ j ) ] - 2  ap~:)/aE, ( 4 1 )  

O [ P ~ 3 J ) ] . . , / O E  = - 8 . . , ~ [ -  sin ( - h ~ , ~ ) )  + h j , ~  ) cos ( h (J)~l /~(J)~ 2 - , , j A  . : a ,  . . . . . .  (42) 
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In deriving Eqs. (36)-(39) we have used the fact that when the potential is 
independent of  energy, D U) can be written as the sum of an energy independent 
full matrix minus 21~E/fi 2 times the unit matrix and so the T (j) are independent 
of  energy and 

OA?)/OE = - t~ /h~)h  2. (43) 

From R4 and OR4/OE we can calculate the scattering matrix and its derivative. 
The result is 

S = -(h(1) + R(4 M) dh~ + R(4 M) dh(2)/dr) (44) 

and 

OS/OE = - (h  (1) + R(4 ~) ah(1)/Or)-'[oR(4M)/oE (oh(Z)/or + ah(1)/arS) 

+ (Oh(2)/OE + Oh(1)/aES) + RIM)(Ogh(2)/Or OE + 02h(D/Or OES)], (45) 

where the matching functions and their derivatives are evaluated at rasy and are 
diagonal with diagonal elements given by Eqs. (5)-(6), etc. 

It should be noted that the R matrix propagat ion algorithm solves exactly the 
scattering problem in which the actual coupling matrix D(r) is replaced by the 
"stair step" coupling matrix D (~). This means that Eq. (45) for the derivative of  
the scattering matrix is exact also. Just as the resonance parameters obtained are 
a function of the potential used, they will by a function of the integration stepsize 
used. This point is discussed further below in Sect. 3.5. 

3.3. The determination of  the initial guess for z~ 

Our experience is that the Newton-Raphson  procedure only converges if the 
initial guess for the pole position is reasonably close to the accurate value. In 
this case, close means that the guess for ~ is within a few multiples of  F~ to 
the accurate value and the guess for F ,  is within about an order of  magnitude 
of the accurate value. For this particular problem (H2X 1 + Eg), we can use the 
previously determined resonance energies and widths as initial guesses, however, 
in some cases these are not good enough (not necessarily because they are not 
sufficiently accurate - see the discussion in Sect. 3.5.), and so we use more general 
procedures. 

We initially determine estimates of the resonance parameters by performing a 
stabilization calculation at real energies. To do this calculation, we use the 11-point 
finite difference boundary value method [22] (FDBV) to determine the eigenvalues 
of  the potential imbedded in a spherical box of variable radius. The resonance 
energy is identified as an energy where the ratio of  the average wave function 
amplitude inside the centrifugal barrier maximum to the average wave function 
amplitude outside the barrier for a particular eigenvalue is maximized as a 
function of  the size of  the spherical box. This is similar to the procedure of  [23]. 
The resonance widths are estimated from the variation of the resonant eigenvalue 
with the size of  the/' box [24]. Sometimes when the widths are too small, this 
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method fails to give a good estimate of  the width. In this case a semiclassical 
procedure is used [25]. Here the width is given by 

F~ = hto exp ( -  2I) ,  (46) 

where to is the classical vibrational period and I is the barrier penetration integral 
given by 

f r 
I =  h -a [2tz( V -  E)]l/2dr, 

r2 

(47) 

where r 2 and r3 are the turning points for the tunneling region. We evaluate the 
vibrational period by differentiating the classical action integral. All integrals 
over the potential are calculated using converged Gauss-Legendre  quadrature. 

I f  the resonance width is greater than about 0.1 cm -1, the FDBV estimate provides 
a sufficiently accurate guess for the Newton-Raphson  procedure to converge to 
the pole. I f  the width is smaller, it is necessary to obtain a more accurate estimate 
of  the resonance energy. We obtain this as follows. On the real energy axis, the 
reactance matrix defined by 

R=i(l+S)-l(1-S) (48) 

is real while at the pole energy, it is purely imaginary. Thus it might be expected 
that the presence of the pole might manifest itself in a wider energy range in the 
complex energy plane than on the real energy axis. We then perform a series of  
calculations varying the resonance energy but keeping the resonance width fixed. 
In these calculations, we look only at the imaginary part of the reactance matrix, 
and seek an energy which makes Im (Rll) closest to - i .  Once this improved 
estimate of  the resonance energy is determined, we improve the estimate of the 
resonance width by roughly optimizing the resonance width at fixed resonance 
energy. This estimate of  the resonance energy and width is then used as input 
to the Newton-Raphson  procedure. We found that this procedure works quite 
well for most resonances and is not strongly dependent on the initial guess for 
the resonance width. The exception occurs for resonances with extremely small 
widths (<10 7 cm-1). The reason for the failure for extremely small widths is 
that for these widths, the finite number  of  digits available on the Computer makes 
it impossible to represent the resonance energy to enough digits so that the 
difference between it and the accurate resonance energy is less than a few multiples 
of the resonance width (all of  our calculations were performed on the AMES ACF 
Cray -X/MP 48 using 64 bit precision). 

Figure 1 shows a plot of  both Im ( R l l )  and the eigenphase sum as a function of 
energy for energies in the vicinity of  the J = 13 resonance. There we see how the 
resonance is manifested over a much broader  energy range in Im (R(1) than in 
the eigenphase sum, which is the usual function monitored when searching for 
resonance. 



390 

10 

D. W. Schwenke 

1 

Q: 
E 10 -1  
i 

..,.. 
0 

~ 10-2 
= _: 

~ 10 -3  

10-4 

1 0 - 5  
198 .0  

J 

| 

I I 
I 
I / 

/ 
/ 

/ 
/ /  

I i 
198 .5  199 .0  

\ 
\ 
\ 

\ 
,% 

I I 
199.5 200.0 200.5 201.0 

E, cm -1 

Fig. 1. The phase shift (solid line) and the negative of the imaginary part of the reactance matrix 
(dashed line) as a function of the real part of the energy in the vicinity of the v = 11, J = 13 resonance 
on the WB potential. For the reactance matrix, the imaginary part of the energy is fixed at - 0.01 cm -1 
while for the phase shift, the energy is real. The stepsize used for both calculations is h = 0.01a o 

3.4. The large r potential 

The po ten t ia l s  for  a t o m - a t o m  scat ter ing behave  at large r as r -6 (we ignore  long 
range rela t ivis t ic  r e t a rda t ion  effects). In  our  ca lcula t ions ,  however ,  when  we s top 
the in tegra t ion  of  Eq. (1) at  rasy to pe r fo rm an  asympto t i c  analysis ,  we assume 
the po ten t ia l  is zero for  r larger  than  rasy. Usua l ly  at real  energies  it is a fa i r ly  
easy mat te r  to converge  the ca lcula t ions  wi th  respect  to increas ing  r~sy, and  then 
the difference be tween  an infini tely ranged  r -6 po ten t ia l  and  a finite ranged  one 
is not  impor tan t .  The s i tua t ion  seems to be different  when  complex  energies  are 
involved.  Empi r i ca l ly  we observed  that  as rasy was increased ,  the  loca t ion  o f  the 
poles  o f  the  scat ter ing mat r ix  moved.  The genera l  pa t t e rn  was a c lockwise  spiral  
which  seemed  to converge  to a circle,  ra ther  than  to a point .  A n  example  o f  this 
is shown in Fig. 2 for  the  b r o a d  v = 14, J - - 6  resonance .  These  features  were 
presen t  in all  of  the r e sonances  for  which we careful ly  checked  convergence  with 

respect  to rasy, and  the rad ius  o f  the circle appea r s  to be a p p r o x i m a t e l y  p ropor -  
t ional  to the  imag ina ry  par t  o f  kl. Thus resonances  with ~ >> F~ will  have small  
radi i ,  and  so the r e sonance  pa ramete r s  will  converge  to a sa t i s fac tory  number  o f  
digits as racy is increased .  No te  that  racy canno t  be m a d e  arb i t ra r i ly  large because  
one o f  the ma tch ing  funct ions  grows as exp [[Im (kl ) l r ] .  I f  a ma tch ing  funct ion  
becomes  too  large,  it wil l  not  be poss ib le  to accura te ly  ca lcula te  the scat ter ing 
matr ix  since the  growth  o f  the match ing  func t ion  in Eq. (44) is coun t e rba l anced  
by  the cance l l a t ion  o f  two terms,  and  the finite p rec i s ion  avai lab le  on the compu te r  
l imits  the amoun t  o f  cance l l a t ion  which  can  occur.  

The p r o b a b l e  cause o f  the  circles as a func t ion  o f  rasy can be  seen by  more  
careful ly  cons ider ing  the ana ly t ic i ty  o f  the scat ter ing matr ix .  F o r  s implic i ty ,  we 
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Fig. 2. The resonance energy and width as a function of  rosy for the v = 14, J = 6 resonance on the 
WB potential.  The symbols mark  an evenly spaced grid of  r~sy going f rom 10 to 20a o, The stepsize 
used for all points  is h = 0.01a o 

consider only the one channel case in this discussion, and so channel subscripts 
will be eliminated. It is most convenient to formulate the calculation of the 
scattering matrix in terms of  the Jost functions f (k )  which are defined by [3] 

io J r ( k )  --= 1 + k - l h - 3 2 i / ~  drhll~(kr) V(r)~b~,k(r), ( 4 9 )  

where q~l,k is the solution of Eq. (1) with boundary condition ~b/,k(r)-jl(kr) as 
r - 0 .  The scattering matrix is then given by 

S(k) = f ( -  k)/f(k).  (50) 

As the energy becomes complex, so that k has a nonzero imaginary part, the 
product hll~d~Z,k will grow as exp [2 Im (k)]. The Jost functions may then become 
undefined because the integral in Eq. (49) may not converge at large r. This is 
not a problem if the potential goes to zero fast enough as r increases. In particular, 
any potential with a finite range will cause the integral in Eq. (49) to be only 
over a finite range and consequently to not diverge. It is pointed out by Newton 
[26] that this means that the results for a potential truncated at rasy will not 
converge to the results for the untruncated potential as r~sy is increased. It is this 
affect which seems to cause the circles as r~sy is increased. 

This poses the question of what are the accurate resonance parameters,  that is 
the ones obtained when the potential is not truncated. However, we must keep 
in mind that due to the uncertainty principle, the finite nonzero lifetime of the 
resonance states places a limit on the precision of the resonance parameters 
which have any meaning. Another aspect of  the problem is that under experimental 
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conditions, there is a limit as to how far apart  the atoms can become until their 
interaction is screened away by the presence of other objects. Thus even if 
parameters were obtained for the untruncated potential, these would not be 
directly applicable to any experimental situation. 

3.5. The extrapolation of the results 

As discussed previously in Sect. 3.2 we solve the scattering problem exactly for 
a potential which differs from the exact one by being piecewise constant with 
stepsize h (in the present calculations, we take all sectors to have equal widths). 
The resonance parameters will depend on the stepsize h and what we desire is 
the values obtained in the limit as h goes to zero. This can be accomplished in 
two ways. First of  all, we can perform a calculation with h small enough so that 
the results obtained are acceptably close to the zero stepsize values. Alternatively, 
we can perform calculations at a sequence of larger stepsizes, and extrapolate to 
zero stepsize. 
We will consider two extrapolation procedures [19]. The first is the Richardson 
extrapolation whereby the results are fitted to a polynomial in powers of  h 2. The 
second is rational function extrapolation whereby the results are fitted to the 
ratio of  two polynomials in powers of  h 2. Table 1 shows the results of  these 
procedures using the stepsize pattern (h, h/2, hi3, hi4, h/6, hi8, h~ 12 , . . .  ). Both 
extrapolation procedures yield results which converge much faster than when 
not using extrapolation. In our production calculations, we perform calculations 
at the first four stepsizes shown in this table and extrapolate the results to zero 
stepsize. In almost all cases, the two extrapolation methods agree after four 
stepsizes to more digits then we quote in the tables, and when they do not agree 
very well, we perform calculations at additional stepsizes until they do agree. 

Table 1. Resonance energy and width as a function of stepsize for J = 13 resonance. The WB 
potential is used with/z atomic. The stepsize is ho/n, ho= 0.1a o. The energy units are cm -~ 
and the width is multiplied by 103 

No Richardson Rat. function 
extrapolation extrapolation extrapolation 

~ r~ ~ r. ~ r~ 

1 204.085 6.624 . . . . . . . . . . . .  
2 200.648 5.343 199.502 4.916 199.528 5.019 
3 199.955 5.114 199.387 4.932 199.386 4.932 
4 199.708 5.034 199.388 4.933 199.388 4.933 
6 199.530 4.978 199.388 4.933 199.388 4.933 
8 199.468 4.958 199.388 4.933 199.388 4.933 

12 199.423 4.944 199.388 4.933 199.388 4.933 
16 199.408 4.939 199.388 4.933 199.388 4.933 
24 199.397 4.936 199.388 4.933 199.388 4.933 
32 199.393 4.935 199.388 4.933 199.388 4.933 
48 199.390 4.934 199.388 4.933 199.388 4.933 
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The behavior of  the poles as a function of stepsize shown in Table 1 is typical, 
with the large stepsize calculations giving resonance energies which differ by 
several cm -~ from the accurate values. Thus if the width is less than about 
0.1 cm -~, an initial guess which is the accurate value, or even the value obtained 
at the last stepsize, will not be sufficiently close to the pole energy for the current 
stepsize for the Newton-Raphson  procedure to converge. This is why it Js 
necessary to have a good method of approximately locating the poles such as 
that given in Sect. 3.3. 

The Richardson extrapolation procedure used here is similar to that used by 
Anderson [27] except that there he extrapolated state-to-state probabilities and 
used polynomials in h 2 which excluded the h 2 term. The Magnus propagator  
used by both of us has a leading error term proportional  to h 2, however, for the 
problem of  [27], for some reason the coefficient of the h 2 term is zero thus giving 
a leading error term proportional  to h 4. For the present application we empirically 
determined that faster convergence was obtained when all powers of  h 2 are 
included. 

4. Potentials 

We consider several different potential functions and these are now discussed. 
Initial tests were carried out on the WB potential, which is an analytic representa- 
tion by Waech and Bernstein [11] to the 1965 Kolos and Wolniewicz, Born- 
Oppenheimer  potential [28]. This potential was also used in the calculations 
of  [12]. 

We next consider a slightly more accurate Born-Oppenheimer  potential, and call 
it BO. This is a fit to the more recent data of  [16]. For r between the limits of  
their tabulated data, the potential is interpolated by a quintic polynomial with 
coefficients determined by exactly fitting [29] r2V and drZV/dr at the nearest 
three points. The potential is extrapolated to larger r using - C 6 / r  6 -  C s / r  8 and 
to smaller r with an exponential with the coefficients determined by continuity 
of  the potential and its derivative. 

The remaining potentials include corrections to the Born-Oppenheimer  potential. 
For all but the nonadiabatic corrections, we approximately follow the procedure 
of  [15]. The next potential is obtained by adding a relativistic correction to BO; 
the result is called Rel. The relativistic correction is taken from [30]. For r less 
than 0.6ao, the correction is represented as an exponential with parameters 
determined from the value of the function and a forward difference estimate of  
its derivative at 0.6a0. For r greater than 3.6ao, exponential decay to the asymptotic 
value is used with an exponential parameter  of  1 ao 1 and the remaining parameters 
determined from the 3.6ao and ao data. Intermediate distances are interpolated 
by a cubic spline which is forced to have continuous functions and derivatives 
when the boundaries at 0.6 and 3.6ao are crossed. To make the spline smooth, 
the data points at 1.401 and 1.4011ao where not included in the fit. 

To the Rel potential, we added a correction for radiative effects to produce a 
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potential called Rad. This correction was determined as in [15] and fit by the 
same procedure described above for the relativistic correction. 

The final correction that can be represented as a state independent potential 
correction is the adiabatic nuclear motion correction which is added to the Rel 
potential to give the one called Ad. The data for this correction is taken from 
[15] and [30] with the results from [30] adjusted for a change in mass by 
multiplying by the factor 1836.12/2 • 918.0764. Some points from [30] were also 
scaled and shifted as described in [15]. For r less than 0.4ao, the data is 
extrapolated using an exponential with parameters determined from the value 
of the function and a forward difference estimate of  its derivative at 0.4ao. For 
r greater than 8ao, exponential decay to the asymptotic value is used with the 
parameters determined by fitting the data at 7 and 8ao. At intermediate distances, 
cubic spline interpolation is used with t h e  spline required to have continuous 
functions and derivatives when the boundaries at 0.4 and 8ao are crossed. 

The final correction is for nonadiabatic effects and cannot be represented as a 
simple addition to the potential in Eq. (1). It is not an easy task to include these 
effects exactly, however, it has been shown that for bound states approximate 
corrections can work quite well [31]. Thus we will base our estimates of  non- 
adiabatic effects on solutions of  an effective Schr6dinger equation which we write 
following [31] as 

d2f(r)/dr 2 = [1 + ce (r)]{[1 - a'(r)]J(J+ 1)/r 2 -  k2+2tzh-2V(r)]}f(r), (51) 

where the channel subscripts for the present one channel application have been 
dropped and a and a '  are correction terms approximated by [31] 

c~(r) = KF(r)/3 (52) 

and 

a'(r) = K'2F(r)/3, (53) 

where K and K' are empirical parameters and F(r) is the function given as column 
8 of Table I I I  of  [30]. In our calculations F(r) is represented in three regions 
similarly as with the other corrections. For r less than 0.6ao, we use A [ 1 -  
exp ( - Br)], with A and B determined from the first two data points. For r greater 
than 3.1 ao, exponential decay to the asymptote is used with parameters determined 
from the data at 3.0 and 3.1ao. Intermediate distances are interpolated using a 
cubic spline with continuous functions and derivatives across the boundaries at 
0.6 and 3.1ao. The tabulated data points for r in the range 3 .2-3 .7ao  are not 
included in the fit because when they were included, the spline fit was not very 
smooth. In the bound state calculations of  [31], t~'(r) was neglected and K was 
adjusted to obtain the best agreement with experimental vib-rotational energies. 
In the present case, we use a slightly different procedure. The parameter  K is 
determined by optimizing the agreement between the bound state energy levels 
for J---0 calculated from Eq. (51) and those calculated from the Ad potential 
corrected by the v, J dependent  factors of  [15]. The energy levels are calculated 
using the FDBV method using a reduced mass equal to 918.07575 a.u. As discussed 
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in [14], there may be some errors in the factors tabulated in [15] for high v, so 
to avoid this possible problem, we only consider energy levels with v <- 11 in the 
optimization process. This yields K = 3.46 x 10 -5 as compared to the value K = 
3.55 x 10 -5 obtained by Bishop and Shih [31]. This value of  K gives energy levels 
which have an rms error of  only 0.056 cm -1 and a maximum error of  0.131 cm -1 
when compared to the accurate values. Once K is fixed, we optimize K' by a 
similar procedure by minimizing the difference between the accurate energies 
and the ones obtained from Eq. (51) for all states with v -  < 11 and J-<31. This 
produces K ' = 6 . 5 0 x  10 .6 and gives an rms error of  0.61 cm -1 and a maximum 
error of  2.2 cm i, which is not as good a fit as for the J = 0 case, but still much 
better than no nonadiabatic corrections at all. When Eq. (51) is used with these 
values of  K and K', the potential will be called Nonad.  For this potential, it is 
necessary to multiply Eqs. (40) and (42) by the factor 1 + a( r ) .  In principle for 

this potential, 1 in Eqs. (5)-(6) should be replaced by ~/A(l+ 1/2)2+ (1 -A)/4- 
1/2, where A is the product  of  the asymptotic values of  a and a ' ,  however, since 
as r - o o ,  1 only enters as a phase in the matching functions and A will not be 
significantly different from unity, we will ignore this replacement. 

The calculations including nonadiabatic effects give a dissociation energy of the 
ground state of/-/2 as 36,118.093 (accurate) and 36,118.071 cm -1 [Eq. (51)] which 
are just within the experimental error bars (36,118.60 4- 0.5 cm -1 [34]). Our accur- 
ate calculation also agrees well with the results of  [16] (we differ by 0.005 cm -1) 
and the results of  [14] (we differ by 0.019 cm-~). The only difference between 
our accurate calculation and that of  [16] is the fitting procedures used for the 
various potentials and the method used for solving the Schrfdinger equation (we 
use the FDBV method),  while an additional difference with the procedure of 
[14] is a slightly different value of the hydrogen mass is used (we use 
1836.1515 a.u. = 1.007276644u vs. 1.007276470u). 

5. Results and discussion 

Table 2 shows resonance parameters calculated using the present new method 
for the several different potentials and compares them to the results of  [12]. The 
particular subset of  resonances shown in this table is the same as [12]. In Tables 
3 and 4, we show the results for additional resonances. 

Column 4 of  Table 2 should differ from the results of  [12] only in the method 
used to calculate the resonance parameters. The particular results quoted from 
[12] and given in column 3, are the ones which correspond to those calculated 
from methods which mimic scattering experiments. The agreement between the 
two columns is quite good for the resonance energies, with differences typically 
a fraction of  a wave number. There are larger differences in the resonance widths, 
especially for broader  resonances, but on the whole the agreement between the 
two methods is quite good. 

The next column in Table 2 (column five), differs only from column four in the 
value of the reduced mass used. Except for the fourth column in Table 2, all our 
calculations use, as the reduced mass of  H2, the nuclear reduced mass 
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Table 2. Resonance parameters for selected resonances for various potential approximations. All 
energies are in cm -1. The first row is the resonance energy, the second is the resonance width and 
the third is the partial width 

v Y [12] WB a WB BO Rel Rad Ad Nonad 

0 38 7510.0 b 7510.93 7520.98 7517.55 7518.15 7518.10 7506.67 7502.49 
80.'0 r 87.10 88.89 89.44 89.58 89.57 86.46 85.82 

. . .  101.18 103.58 104.34 104.52 104.52 100.31 99.47 
0 37 6513.3 6515.79 6526.61 6523.47 6524.15 6524.10 6510.86 6506.51 

5.84 6.021 6.261 6.335 6.353 6.352 5.948 5.863 
. . .  6.069 6.313 6.389 6.407 6.406 5.995 5.909 

1 35 5549.8 5551.18 5560.75 5557.34 5557.94 5557.90 5546.79 5542.76 
14.1 14.51 15.06 15.22 15.26 15.26 14.40 14.19 

. . .  14.80 15.38 15.55 15.59 15.59 14.69 14.47 
2 33 4688.4 4689.09 4697.60 4694.02 4694.55 4694.52 4685.06 4681.33 

20.4 20.93 21.71 21.95 22;01 22.01 20.86 20.53 
. . .  21.57 22.39 22.65 22.71 22.71 21.49 21.14 

3 31 3925.0 3925.23 3932.81 3929.07 3929.55 3929.52 3921.39 3917.91 
23.6 24.21 25.10 25.38 25.44 25.44 24.19 23.78 

. . .  25.07 26.03 26.33 26.40 26.40 25.05 24.61 
4 29 3254.7 3254.79 3261.54 3257.63 3258.05 3258.03 3251.01 3247.77 

24.7 25.31 26.26 26.52 26.58 26.58 25.32 24.85 
. . .  26.26 27.29 27.57 27.64 27.64 26.27 25.77 

5 27 2673.0 2673.01 2678.97 2674.87 2675.25 2675.23 2669.19 2666.18 
25.1 25.72 26.71 26.97 27.04 27.04 25.80 25.28 

. . .  26.71 27.78 28.07 28.14 28.14 26.80 26.24 
6 25 2175.0 2174.96 2180.16 2175.88 2176.21 2176.20 2171:05 2168.29 

26.5 27.09 28.13 28.36 28.43 28.42 27.18 26.61 
. . .  28.20 29.33 29.59 29.66 29.66 28.31 27.68 

7 23 1755.3 1755.13 1759.59 1755.14 1755 .43  1755.42 1751.13 1748.64 
30.4 31.12 32.26 32.46 32.53 32.53 31.22 30.54 

. . .  32.59 33.84 34.08 34.17 34.17 32.72 31.98 
8 21 1407.0 1406.79 1410.48 1405 .91  1406.16 1406.15  1402.69 1400.51 

39.4 40.44 41.79 41.93 42.02 42.02 40.52 39.68 
. . .  42.89 44.40 44.61 44.71 44.71 43.02 42.08 

9 19 1121.6 1121.28 1124.20 1119.52 1119.72 1119.71  1117.05 1115.24 
57.9 59.61 61.29 61.40 61.51 61.51 59.71 58.59 

. . .  64.36 66.29 66.58 66.71 66.71 64.63 63.38 
9 18 725.9 725.87 730.05 725.75 726.04 726.03 721.83 719.11 

0.52 0.5244 0.5718 0.5559 0.5592 0.5592 0.5092 0.4794 
� 9  0.5246 0.5721 0.5562 0.5595 0.5595 0.5095 0.4796 

586.0 585.91 5 8 9 . 1 1  584.70 584.93 584.93 5 8 1 . 8 1  579.61 
2.92 2.919 3.125 3.024 3.038 3.038 2.826 2.686 

. . .  2.928 3.136 3.034 3.049 3.049 2.836 2.695 
480.1 479.97 482.11 477.63 477.78 477.78 475.78 474.24 

17.9 17.93 18.70 18.14 18.19 18.19 17.43 16.87 
. . .  18.27 19.06 18.50 18.56 18.56 17.77 17.19 

199.4 199.39 202.59 198.22 198.45 1 9 8 . 4 5  195.25 192.84 
0.0053 0.004926 0.005966 0.004839 0.004908 0.004908 0.004014 0.003439 

. . .  0.004926 0.005966 0.004839 0.004907 0.004908 0.004014 0.003439 
385.0 384.91 d 386.10 381.42 381.51 381.51 380.47 379.60 

74.5 71.60 73.19 70.91 71.02 71.03 69.49 68.28 
. . .  69.00 70.36 68.65 68.75 68.75 67.42 66.48 

215.5 215.47 217.41 213.21 213.36 213.36 211.48 209.94 
2.63 2.615 2.829 2.517 2.532 2.532 2.335 2.182 

10 16 

11 14 

11 13 

12 12 

12 11 
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Table 2--continued 

397 

v J [12] WB a WB BO Rel Rad Ad Nonad 

. . .  2.621 2.836 2.522 2.537 2.538 2.340 2.187 
13 9 195.0 194.69 195.44 191.88 1 9 1 . 9 5  191.95 191.26 190.56 

56.6 51.47 52.69 49.32 49.41 49.41 48.28 47.33 
. . .  45.11 45.92 43.61 43.67 43.68 42.89 42.52 

13 8 89.9 89.91 91.23 87.45 87.55 87.56 86.26 85.12 
1.90 1.871 2.059 1.630 1.643 1.643 1.485 1.353 

� 9  1.871 2.060 1.631 1.644 1.644 1.485 1.354 
14 6 81.9 84.26 ~ 84.51 82.41 82.43 82.43 82.29 82.11 

115. 72.96 74.25 68.73 68.84 68.84 67.60 65.87 
. . .  42.97 43.16 42.67 42.75 42.75 41.81 38.83 

14 5 45.7 45.79 46.18 44.17 44.21 44.21 43.82 43.46 
29.5 17.65 18.28 15.74 15.79 15.79 15.22 14.69 

. . .  14.50 14.89 13.26 13.29 13.29 12.90 12.53 
14 4 e 3.76 3.756 4.516 1.566 1.632 1.633 0.8420 0.088 

0.0060 0.00586 0.0129 1.32(-4) f 1.58(-4) 1.59(-4) 8.38(-6) < 1 ( - 9 )  
. . .  0.00586 0.0129 1.32(-4) 1.58(-4) 1.59(-4) 8.38(-6) < 1 ( - 9 )  

This column uses /Zato~io while all others use /Znudear 
b The first row is the resonance energy. We quote the column labeled rd(max ) from [12] 
~ The second row is the resonance width. We quote the column labeled 2/[~re'ra(max)] from [12] 
d This resonance has Im k large enough so that the results do not converge with respect to increasing 
ra, >. These results use rasy = 20a o 

We use extrapolation based on 6 stepsizes for this resonance 
f 1.32(-4) = 1.32• 10 -4 

(918 .07575  a.u.  [16] ) ,  w h i l e  t h e  f o u r t h  c o l u m n  u s e s  a v a l u e  o f  t h e  a t o m i c  r e d u c e d  

m a s s  (918 .575728  a .u . )  w h i c h  w as  a p p a r e n t l y  u s e d  b y  [12] .  T h e  n u c l e a r  r e d u c e d  

m a s s  is t h e  o n e  w h i c h  is c o n s i s t e n t  w i t h  t h e  B o r n - O p p e n h e i m e r  a p p r o x i m a t i o n  

a n d  c o r r e c t i o n s  to  it. T h e  ef fec t  o f  c h a n g i n g  t h e  r e d u c e d  m a s s  is f a i r l y  l a rge  w i t h  

t h e  r e s o n a n c e  e n e r g i e s  i n c r e a s i n g  b y  u p  to  a b o u t  11 c m  -a w h e n  t h e  n u c l e a r  

r e d u c e d  m a s s  is u sed .  T h e  l a r g e r  r e s o n a n c e  w i d t h s  a re  i n c r e a s e d  b y  a b o u t  1 c m  -1 

a n d  t h e  s m a l l e r  w i d t h s  a re  i n c r e a s e d  b y  f a i r l y  l a rge  f ac to r s .  

T h e  n e x t  c o l u m n s  s h o w  t h e  ef fec t  o f  u s i n g  d i f f e r e n t  p o t e n t i a l s .  C h a n g i n g  f r o m  

t h e  W B  a p p r o x i m a t e  fit to  B o r n - O p p e n h e i m e r  d a t a  to  t h e  m o r e  a c c u r a t e  B O  

p o t e n t i a l  c a u s e s  a d e c r e a s e  in  t h e  r e s o n a n c e  e n e r g i e s  a n d  in  f ac t  m a n y  o f  t h e  

r e s o n a n c e  e n e r g i e s  f r o m  t h e  B O  p o t e n t i a l  a g r e e  f a i r l y  wel l  w i t h  t h e  r e su l t s  f r o m  

t h e  W B  p o t e n t i a l  u s i n g  t h e  a t o m i c  r e d u c e d  m a s s .  T h e  r e s o n a n c e  w i d t h s  a re  

u s u a l l y  i n c r e a s e d  b y  th i s  c h a n g e ,  b u t  n o t  a l w ays .  L a r g e r  w i d t h s  c h a n g e  b y  s eve ra l  

t e n t h s  o f  w a v e  n u m b e r s  w h i l e  t h e  n a r r o w  w i d t h s  d e c r e a s e ,  in  s o m e  cases  d r a m a t i -  

cal ly .  A d d i n g  r e l a t i v i t y  i n c r e a s e s  t h e  r e s o n a n c e  e n e r g i e s  s l igh t ly ,  t y p i c a l l y  b y  a 

f ew t e n t h s  o f  a w a v e  n u m b e r .  T h e  c h a n g e  in  t h e  r e s o n a n c e  w i d t h s  is s im i l a r ,  

a l t h o u g h  u s u a l l y  s m a l l e r .  F o r  m o s t  r e s o n a n c e s ,  a d d i n g  t h e  r a d i a t i v e  c o r r e c t i o n  

c a u s e s  a n e g l i g i b l e  c h a n g e  in  t h e  r e s o n a n c e  p a r a m e t e r s .  I n c l u d i n g  t h e  a d i a b a t i c  

n u c l e a r  m o t i o n  c o r r e c t i o n  l o w e r s  t he  r e s o n a n c e  e n e r g i e s  a n d  d e c r e a s e s  t h e  r e s o n -  

a n c e  w i d t h s  b y  a f a i r l y  l a r g e  a m o u n t - - t h i s  c o r r e c t i o n  c a u s e s  t h e  l a r g e s t  c h a n g e  
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Table 3. Resonance parameters for additional resonances with narrow widths on the Ad and Nonad 
potentials. Energies are in cm -~. The first row is the resonance energy and the second is the resonance 
width a 

v J Ad Nonad Experiment c 

FDBV/WKBb Accurate Accurate 

0 36 5414.3 5414.32 5409.82 
0.0547 0.06077 0.05943 

0 35 4243.24 4243.24 4238.71 
7.46(-5)  d 8.284(-5) 8.025(-5) 

0 34 3016.77 3012.26 e 
5.47(-9)  5.22(-9) 

1 34 4535 4534.92 4530.59 
0.131 0.1375 0.1340 

0 33 1744.44 1739.97 e 
8.84(-16) 8.13(-16) 

1 33 3433.34 3433.34 3428.89 
1.04(-4) 1.091(-4) 1.050(-4) 

0 32 432.68 428.28 ~ 
6.04(-34) 4.31(-34) 

1 32 2271.16 2266.68 e 
1.78(-9) 1.68(-9) 

2 32 3750.6 3750.57 3746.40 
0.166 0.1707 0.1658 

1 31 1061.27 1056.79 ~ 
1.49(-18) 1.30(-18) 

2 31 2716.74 2716.74 2712.38 
6.55(-5) 6.780(-5) 6.476(-5) 

2 30 1619.48 1615.03 ~ 
1.38(-10) 1.28(-10) 

2 29 474.14 469.65 e 
8.18(-25) 6.15(-25) 

3 30 3059.40 3059.39 3055.36 
0.155 0.1578 0.1526 

3 29 2092.99 2092.99 2088.70 
2.54(-5) 2.603(-5) 2.462(-5) 

3 28 1062.40 1057.98 e 
2.08(-12) 1.85(-12) 

4 28 2459.3 2459.34 2455.46 
0.124 0.1258 0.1211 

4 27 1561.58 1561.58 1557.38 
6.75(-6) 6.876(-6) 6.413(-6) 

4 26 600.44 596.06 ~ 
1.92(-15) 1.58(-15) 

5 26 1948.3 1948.26 1944.53 
0.0968 0.09753 0,09329 

5 25 1121.73 1121.73 1117.63 
1.33(-6) 1.343(-6) 1,230(-6) 

5 24 233.77 229.44 e 
1.12(-21) 7.06(-22) 

6 24 1523.5 1523.54 1519.98 
0.0833 0.08361 0.07946 

6 23 772.07 772.07 768.08 
2.15(-7) 2.160(-7) 1.925(-7) 

2088.59 

1556.93 

595.50 

1943.99 

1117.20 

228.57 

1519.45 

767.81 
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Table 3--continued 

v J Ad Nonad Experiment r 

FDBV/WKB b Accurate Accurate 

7 22 1181.7 1181.63 1178.28 1177.76 
0.0933 0.09286 0.08773 

7 21 510.08 506.26 e 506.33 
3.69( - 8) 3.16(-8) 

8 20 917.1 917.19 914.11 914.03 
0.163 0.1610 0.1514 

8 19 331.40 327.78 e 328.15 
1.29(-8) 1.05(-8) 

9 18 721.9 721.83 719.11 718.96 
0.526 0.5092 0.4794 

9 17 228.65 225.31 ~ 225.10 
3.55(-8) 2.76(-8) 

10 15 189.78 189.78 186.83 186.51 
3.24(-6) 3.21 (-6) 2.51 (-6) 

11 13 195.25 195.25 192.84 192.54 
4.17(-3) 4.014(-3) 3.439(-3) 

a All resonances in this table have partial widths which differ by less than 0.1% from the resonance 
width 
b The resonance energy is calculated using the FDBV method and the width is found using the 
semiclassical formula evaluated at the FDBV energy 
c The excitation energies of [35] have the theoretical D O = 36118.07 cm i subtracted from them 

7.46(-5)=7.46x 10 5 
e This resonance is too narrow to use the accurate method so the FDBV/WKB method is used instead 

o f  any  o f  the  o t h e r  p o t e n t i a l  va r i a t ions .  S o m e  r e s o n a n c e  ene rg ies  c h a n g e  by as 

m u c h  as 13 cm 1 a n d  the re  are  wid ths  w h i c h  c h a n g e  severa l  w a v e  n u m b e r s .  

A p p r o x i m a t e l y  i n c l u d i n g  n o n a d i a b a t i c  effects  causes  a fu r the r  d e c r e a s e  o f  t he  

r e s o n a n c e  p a r a m e t e r s ,  w i th  changes  on  the  o r d e r  o f  w a v e  n u m b e r s  for  the  

r e s o n a n c e  ene rg ie s  a n d  f r ac t ions  o f  w a v e  n u m b e r s  fo r  the  wid ths .  

T h e  pa r t i a l  w id ths  are  a lso  s h o w n  in T a b l e  2. These  p a r a m e t e r s  c h a n g e  wi th  

v a r i o u s  p o t e n t i a l  m o d i f i c a t i o n s  in a s imi la r  m a n n e r  as the  r e s o n a n c e  wid ths .  As 

m e n t i o n e d  in Sect.  2, fo r  r e s o n a n c e s  w h i c h  sa t is fy  the  I N R  h y p o t h e s i s ,  the  par t i a l  

w i d t h  s h o u l d  e q u a l  the  r e s o n a n c e  wid th .  O f  all  the  r e s o n a n c e s  wi th  p a r a m e t e r s  

g iven  in T a b l e  2, this  e q u a l i t y  on ly  ho ld s  fo r  the  n a r r o w e s t  r e s o n a n c e s .  F o r  

b r o a d e r  r e s o n a n c e s ,  it is m o s t  l ike ly  tha t  the  pa r t i a l  w i d t h  wil l  be  g r ea t e r  t h a n  

the  r e s o n a n c e  w id th ,  bu t  this is no t  a lways  so. 

A n  in t e re s t ing  r e s o n a n c e  to  s ingle  ou t  f r o m  T a b l e  2 is the  one  wi th  v = 14, J = 4. 

This  s ta te  is a l m o s t  b o u n d  a n d  its r e s o n a n c e  p a r a m e t e r s  a re  ve ry  sens i t ive  to 

changes  in the  p o t e n t i a l  w i th  the  r e s o n a n c e  e n e r g y  r a n g i n g  f r o m  4.516 to 

0.088 cm -1 a n d  the  w i d t h  r a n g i n g  f r o m  0.0129 to < 1 x 10 -9 cm -1. E x p e r i m e n t a l l y ,  

this s ta te  a p p e a r s  to be  b o u n d ,  h o w e v e r ,  its b i n d i n g  e n e r g y  o f  0.48 cm -1 ( f r o m  

the  e x c i t a t i o n  e n e r g y  f r o m  [35] a n d  the  d i s s o c i a t i o n  e n e r g y  o f  [34])  is less t h a n  

the  e r ro r  ba r s  o f  the  d i s s o c i a t i o n  ene rgy  (0.5 cm-1 ) .  T h e r e  has  b e e n  s o m e  d e b a t e  
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Table 4. Resonance parameters for additional 
resonances with wide widths on the Ad and 
Nonad potentials. Energies are in cm -1. The 
first row is the resonance energy, the second 
is the resonance width and the third is the 
partial width 

v J Ad Nonad 

1 36 6443 6439 
166 164 
216 215 

2 34 5497 5493 
218 217 
305 302 

3 32 4657 4653 
247 245 
355 354 

4 30 3914 3911 
259 258 
374 375 

5 28 3263 3260 
264 263 
378 380 a 

6 26 2695 2693 
268 266 
375 370 a 

10 17 883 882 
96.3 94.8 
105 103 

11 15 687 687 
159 158 
160 160 

a This parameter has an uncertainty of about 
10 cm -~ 

a b o u t  w h e t h e r  o r  no t  it s h o u l d  be  i n c l u d e d  w h e n  c a l c u l a t i n g  th ree  b o d y  r e c o m b i -  

n a t i o n  ra tes  [2, 32, 33]. I n  p rac t i ce ,  h o w e v e r ,  it is p r o b a b l y  n o t  i m p o r t a n t  w h e t h e r  

o r  no t  this  s ta te  is r ea l ly  b o u n d  w h e n  the  k ine t i cs  a re  ca re fu l l y  t a k e n  in to  a c c o u n t  

fo r  it is u n l i k e l y  tha t  t he r e  is a d i f fe rence  b e t w e e n  an  inf in i te  l i f e t ime  a n d  a 

l i f e t ime  g r ea t e r  t h a n  0.005 s. 

I n  Tab l e  3 the  r e m a i n i n g  n a r r o w  r e s o n a n c e s  (wid ths  less t h a n  1 cm -1) a re  g iven  

a l o n g  wi th  e x p e r i m e n t a l  r e s o n a n c e  ene rg ie s  w h e n  t h e y  are  ava i l ab l e  [35]. T h e  
w id ths  r a n g e  f r o m  0.17 to  6 x  10 -34cm -1. T h e  a g r e e m e n t  w i th  e x p e r i m e n t a l  

ene rg ie s  is v e r y  g o o d  fo r  t he  N o n a d  p o t e n t i a l  ( the  rms e r ro r  is 0.42 c m - 1 ) ,  in 

fac t  it is s l igh t ly  be t t e r  t h a n  can  be  e x p e c t e d  b a s e d  u p o n  the  e r rors  f o u n d  in t he  

c a l i b r a t i o n  p roce s s  ( rms  e r ro r  0.61 cm-1 ) .  Th is  con t ras t s  w i th  an  rms  e r ro r  o f  

3.99 cm -1 w h e n  n o n a d i a b a t i c  effects  are  i g n o r e d  a n d  the  A d  p o t e n t i a l  is used .  

A l s o  g iven  in  T a b l e  3 a re  the  resul ts  o f  t he  F D B V  m e t h o d  u s e d  to  d e t e r m i n e  the  

r e s o n a n c e  ene rg ies  a n d  the  W K B  [Eq .  (46)]  m e t h o d  to d e t e r m i n e  the  wid ths .  
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The FDBV method gives energies for these narrow resonances which agree very 
well with the accurate ones. The widths from the WKB method are not as accurate, 
with about 10% error for the resonances with v = 0. As v increases, the widths 
become more accurate, and for large v, agree within about 1% with the accurate 
values. 

Table 4 contains the results for resonances with larger widths. These show similar 
trends as the broader resonances in Table 2. There appear to be no other 
resonances not includett in Tables 2 to 4 which have widths smaller than about 
200 cm -1 on the Ad potential, however, there are many with larger widths. In 
fact, potentials such as the ones used here have an infinite number of resonances 
[3]. However, most of these resonances are not of physical interest, since they 
will have increasing widths and the distinction between resonant and background 
scattering will be miniscule. 

6. Conclusions 

We have developed a new method to calculate resonance parameters and applied 
it to the hydrogen molecule. The new method works very well and should be 
applicable to a wide variety of problems. An important ingredient of the method 
is the accurate calculation of derivatives of the scattering matrix with respect to 
the energy. It is expected that this quantity can be used to advantage in other 
situations besides the one described here. One possible extension might be to 
calculate derivatives of the scattering matrix with respect to potential parameters 
[36]. However, this would introduce new complications and hence require some 
modifications of the present procedure. 

A subset of  the 1-12 resonances are considered on several different potentials 
which differ in the inclusion of corrections to the Born-Oppenheimer potential. 
The correction which has the largest effect is the adiabatic nuclear motion 
correction. Nonadiabatic effects are also included in an approximate manner, 
and they are also significant. It is also important to use the nuclear reduced mass 
rather than the atomic reduced mass in the calculations so as to be consistent 
with the Born-Oppenheimer approximation and its corrections. 
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